Publisher of Open Access Quality Scientific Journal

Journal of Contemporary Agriculture and Bioscience

Research Article

Screening Rice Varieties for Salinity Tolerance Based on Growth and Yield Traits

Mohammad Ashik Elahi Shohel*
Mohammad Ashik Elahi Shohel*

Department of Agricultural Chemistry, Faculty of Agriculture, EXIM Bank Agricultural University Bangladesh

,Md. Alimuzzaman Rifath,
Md. Alimuzzaman Rifath,

Department of Agricultural Chemistry, Faculty of Agriculture, EXIM Bank Agricultural University Bangladesh

,Md. Edul Hasan Rimon,
Md. Edul Hasan Rimon,

Department of Agricultural Chemistry, Faculty of Agriculture, EXIM Bank Agricultural University Bangladesh

,Md. Morshalin Haque,
Md. Morshalin Haque,

Department of Agricultural Chemistry, Faculty of Agriculture, EXIM Bank Agricultural University Bangladesh

,Md. Abujar Gifari Mim, Md. Abdullah Majumdar
Md. Abujar Gifari Mim, Md. Abdullah Majumdar

Department of Agricultural Chemistry, Faculty of Agriculture, EXIM Bank Agricultural University Bangladesh

and Md. Emrul Hasan
Md. Emrul Hasan

Department of Agricultural Chemistry, Faculty of Agriculture, EXIM Bank Agricultural University Bangladesh


Received: 07 January, 2026 || Accepted: 29 January, 2026 || Published: 31 January, 2026

 

A b s t r a c t

Salinity stress is a major environmental constraint affecting rice production worldwide. This study evaluated the performance of three salt-tolerant rice varieties (BRRI dhan97, BRRI dhan99, and BINAdhan-10) under four salinity levels (0, 3, 6, and 9 dS/m) in pot culture during the Boro season 2024-25. The experiment was conducted following a Completely Randomized Design with three replications. Results revealed significant varietal and salinity effects on all growth and yield parameters. BINAdhan-10 exhibited superior performance across most parameters, showing maximum plant height (72.33 cm), tiller number (14.42), effective tillers (11.67), panicle length (25.17 cm), filled grains per panicle (90.92), 1000-seed weight (25.70 g), and grain yield (24.40 g/pot). Salinity levels of 9 dS/m significantly reduced plant height by 3.50%, tiller number by 18.74%, and grain yield by 10.13% compared to control. The interaction effect showed BINAdhan-10 at 6 dS/m salinity produced the highest grain yield (26.33 g/pot), while BRRI dhan97 at 9 dS/m recorded the lowest (17.90 g/pot). These findings suggest that BINAdhan-10 possesses better salt tolerance mechanisms and can be recommended for cultivation in salt-affected areas.

Keywords: Salinity stress, Rice varieties, Growth parameters, Yield components and Salt tolerance.


Copyright information: Copyright © 2026 Author(s) retain the copyright of this article. This work is licensed under a Creative Commons Attribution 4.0 International License


    How to cite: Shohel, M.A.E., Rifath, M.A., Rimon, M.F.H., Haque, M.M., Mim, M.A.G., Majumdar,M.A. and Hasan, M.E. 2026. Screening Rice Varieties for Salinity Tolerance Based on Growth and Yield Traits. Journal of Contemporary Agriculture and Bioscience, 3(1), 9-14.  

 

REFERENCES

  1. Abbas, G., Chen, Y., Khan, F. Y., Feng, Y., Palta, J. A., & Siddique, K. H. M. (2022). Salinity and low phosphorus differentially affect shoot and root traits in two wheat cultivars with contrasting tolerance to salt. Agronomy, 12(3), 715. https://doi.org/10.3390/agronomy12030715
  2. Ahmed, F., Islam, M. R., Sarkar, M. A. R., Jubayer, M. F., & Kundu, P. K. (2023). Salinity-induced changes in rice production and adaptation strategies in Bangladesh. Environmental Challenges, 10, 100683. https://doi.org/10.1016/j.envc.2023.100683
  3. Chanda, M., Mortley, D. G., Mbous, Y. P., Koundinya, A. V., & Pichardo, K. (2021). Salinity-induced oxidative stress affects pollen viability and spikelet fertility in rice. Plant Stress, 2, 100025. https://doi.org/10.1016/j.stress.2021.100025
  4. Farooq, M., Hussain, M., Nawaz, A., Lee, D. J., Alghamdi, S. S., & Siddique, K. H. M. (2020). Salt stress in maize: Effects, resistance mechanisms, and management strategies. Agronomy Journal, 112(1), 23-45. https://doi.org/10.1002/agj2.20138
  5. Hossain, M. S., Abid, M. A., Dasgupta, S., Haque, M. E., & Shahid, S. (2021). Climate change impacts on soil salinity in the coastal Bangladesh. Scientific Reports, 11(1), 8365. https://doi.org/10.1038/s41598-021-87775-5
  6. Hussain, S., Zhang, R., Liu, S., Li, R., Ma, Y., Chen, Y., & Tang, X. (2023). Salinity stress in rice: Physiological responses, tolerance mechanisms, and management strategies. Frontiers in Plant Science, 14, 1215371. https://doi.org/10.3389/fpls.2023.1215371
  7. Islam, M. R., Sarkar, M. A. R., Sharma, N., Rahman, M. A., Collard, B. C. Y., & Gregorio, G. B. (2023). Assessment of adaptability of recently released salt tolerant rice varieties in coastal regions of Bangladesh. Field Crops Research, 291, 108768. https://doi.org/10.1016/j.fcr.2022.108768
  8. Islam, M. T., Hasanuzzaman, M., Alam, M. M., Nahar, K., & Fujita, M. (2024). Salinity stress in rice: Effects, mechanisms, and management. Plant Stress, 11, 100251. https://doi.org/10.1016/j.stress.2024.100251
  9. Kumar, A., Singh, S., Gaurav, A. K., Srivastava, S., & Verma, J. P. (2022). Plant growth-promoting bacteria: Biological tools for the mitigation of salinity stress in plants. Frontiers in Microbiology, 11, 1216564. https://doi.org/10.3389/fmicb.2022.1216564
  10. Kumar, S., Beena, R., Kiruba, A. M., & Sabarinathan, S. (2023). Salinity stress affects pollen germination and tube growth in rice through oxidative damage. Plant Physiology and Biochemistry, 195, 358-367. https://doi.org/10.1016/j.plaphy.2023.01.032
  11. Mahmud, M. S., Abdullah-Al-Mamun, M., Hasan, M. M., Ahmed, S. S., & Islam, M. N. (2024). Antioxidant enzyme activities and gene expression in salt-tolerant and salt-sensitive rice genotypes under salinity stress. Cereal Research Communications, 52(1), 89-102. https://doi.org/10.1007/s42976-023-00398-5
  12. Mondal, S., Bose, B., Subudhi, P. K., & Jena, K. K. (2023). Unraveling salinity stress responses in rice: Insights from omics approaches. Plant Stress, 8, 100156. https://doi.org/10.1016/j.stress.2023.100156
  13. Negrão, S., Schmöckel, S. M., & Tester, M. (2020). Evaluating physiological responses of plants to salinity stress. Annals of Botany, 119(1), 1-11. https://doi.org/10.1093/aob/mcw191
  14. Parihar, P., Singh, S., Singh, R., Singh, V. P., & Prasad, S. M. (2020). Changing scenario in plant water relations due to salinity and drought stress in agriculture. Physiologia Plantarum, 171(4), 664-678. https://doi.org/10.1111/ppl.13210
  15. Paul, S., Roychoudhury, A., Banerjee, A., Chaudhuri, N., & Ghosh, P. (2021). Seed priming with spermidine ameliorates the negative effect of salinity on rice seedlings by modulating endogenous polyamine and carbohydrate metabolism. Protoplasma, 258(4), 883-897. https://doi.org/10.1007/s00709-021-01612-2
  16. Rahman, M. A., Hasanuzzaman, M., Nahar, K., Fujita, M., & Ozturk, M. (2022). Salt stress and rice: Adapting crop productivity in adverse environments. Physiologia Plantarum, 174(5), e13818. https://doi.org/10.1111/ppl.13818
  17. Rashid, M. H., Alam, M. J., Islam, M. M., & Hossain, M. A. (2024). Performance evaluation of BRRI developed salt tolerant rice varieties in southern coastal region of Bangladesh. Bangladesh Rice Journal, 27(1), 45-58. https://doi.org/10.3329/brj.v27i1.68574
  18. Reddy, I. N. B. L., Kim, B. K., Yoon, I. S., Kim, K. H., & Kwon, T. R. (2023). Salt tolerance in rice: Focus on mechanisms and approaches. Rice Science, 24(2), 123-144. https://doi.org/10.1016/j.rsci.2016.09.004
  19. Roy, S. J., Huang, W., Wang, X. J., Evrard, A., Schmöckel, S. M., Zafar, Z. U., & Tester, M. (2020). A novel protein kinase involved in Na⁺ exclusion revealed from positional cloning. Plant, Cell & Environment, 36(3), 553-568. https://doi.org/10.1111/pce.12608
  20. Sarkar, T., Thankappan, R., Kumar, A., Mishra, G. P., & Dobaria, J. R. (2021). Heterologous expression of the AtUSP gene for overcoming salinity stress in rice. Rice Science, 21(6), 310-320. https://doi.org/10.1016/j.rsci.2014.08.002
  21. Sehar, Z., Masood, A., & Khan, N. A. (2022). Salinity-induced oxidative stress and antioxidant defense mechanisms in wheat. Frontiers in Plant Science, 13, 983952. https://doi.org/10.3389/fpls.2022.983952
  22. Singh, R. K., Kota, S., & Flowers, T. J. (2023). Salt tolerance in rice: Present status and future prospects. International Journal of Molecular Sciences, 24(3), 2217. https://doi.org/10.3390/ijms24032217
  23. Wani, S. H., Kumar, V., Khare, T., Guddimalli, R., Parveda, M., Solymosi, K., & Suprasanna, P. (2021). Engineering salinity tolerance in plants: Progress and prospects. Planta, 251(4), 76. https://doi.org/10.1007/s00425-020-03366-6
  24. Zelm, E. V., Zhang, Y., & Testerink, C. (2020). Salt tolerance mechanisms of plants. Annual Review of Plant Biology, 71, 403-433. https://doi.org/10.1146/annurev-arplant-050718-100005
  25. Shohel, M.A.E., Rifath, M.A., Rimon, M.F.H., Haque, M.M., Mim, M.A.G., Majumdar,M.A. and Hasan, M.E.

  Article View: 584 times