Journal of Contemporary Agriculture and Bioscience
Screening Rice Varieties for Salinity Tolerance Based on Growth and Yield Traits
Received: 07 January, 2026 || Accepted: 29 January, 2026 || Published: 31 January, 2026
A b s t r a c t
Salinity stress is a major environmental constraint affecting rice production worldwide. This study evaluated the performance of three salt-tolerant rice varieties (BRRI dhan97, BRRI dhan99, and BINAdhan-10) under four salinity levels (0, 3, 6, and 9 dS/m) in pot culture during the Boro season 2024-25. The experiment was conducted following a Completely Randomized Design with three replications. Results revealed significant varietal and salinity effects on all growth and yield parameters. BINAdhan-10 exhibited superior performance across most parameters, showing maximum plant height (72.33 cm), tiller number (14.42), effective tillers (11.67), panicle length (25.17 cm), filled grains per panicle (90.92), 1000-seed weight (25.70 g), and grain yield (24.40 g/pot). Salinity levels of 9 dS/m significantly reduced plant height by 3.50%, tiller number by 18.74%, and grain yield by 10.13% compared to control. The interaction effect showed BINAdhan-10 at 6 dS/m salinity produced the highest grain yield (26.33 g/pot), while BRRI dhan97 at 9 dS/m recorded the lowest (17.90 g/pot). These findings suggest that BINAdhan-10 possesses better salt tolerance mechanisms and can be recommended for cultivation in salt-affected areas.
Keywords: Salinity stress, Rice varieties, Growth parameters, Yield components and Salt tolerance.
Copyright information: Copyright © 2026 Author(s) retain the copyright of this article. This work is licensed under a Creative Commons Attribution 4.0 International License
How to cite: Shohel, M.A.E., Rifath, M.A., Rimon, M.F.H., Haque, M.M., Mim, M.A.G., Majumdar,M.A. and Hasan, M.E. 2026. Screening Rice Varieties for Salinity Tolerance Based on Growth and Yield Traits. Journal of Contemporary Agriculture and Bioscience, 3(1), 9-14.
REFERENCES
- Abbas, G., Chen, Y., Khan, F. Y., Feng, Y., Palta, J. A., & Siddique, K. H. M. (2022). Salinity and low phosphorus differentially affect shoot and root traits in two wheat cultivars with contrasting tolerance to salt. Agronomy, 12(3), 715. https://doi.org/10.3390/agronomy12030715
- Ahmed, F., Islam, M. R., Sarkar, M. A. R., Jubayer, M. F., & Kundu, P. K. (2023). Salinity-induced changes in rice production and adaptation strategies in Bangladesh. Environmental Challenges, 10, 100683. https://doi.org/10.1016/j.envc.2023.100683
- Chanda, M., Mortley, D. G., Mbous, Y. P., Koundinya, A. V., & Pichardo, K. (2021). Salinity-induced oxidative stress affects pollen viability and spikelet fertility in rice. Plant Stress, 2, 100025. https://doi.org/10.1016/j.stress.2021.100025
- Farooq, M., Hussain, M., Nawaz, A., Lee, D. J., Alghamdi, S. S., & Siddique, K. H. M. (2020). Salt stress in maize: Effects, resistance mechanisms, and management strategies. Agronomy Journal, 112(1), 23-45. https://doi.org/10.1002/agj2.20138
- Hossain, M. S., Abid, M. A., Dasgupta, S., Haque, M. E., & Shahid, S. (2021). Climate change impacts on soil salinity in the coastal Bangladesh. Scientific Reports, 11(1), 8365. https://doi.org/10.1038/s41598-021-87775-5
- Hussain, S., Zhang, R., Liu, S., Li, R., Ma, Y., Chen, Y., & Tang, X. (2023). Salinity stress in rice: Physiological responses, tolerance mechanisms, and management strategies. Frontiers in Plant Science, 14, 1215371. https://doi.org/10.3389/fpls.2023.1215371
- Islam, M. R., Sarkar, M. A. R., Sharma, N., Rahman, M. A., Collard, B. C. Y., & Gregorio, G. B. (2023). Assessment of adaptability of recently released salt tolerant rice varieties in coastal regions of Bangladesh. Field Crops Research, 291, 108768. https://doi.org/10.1016/j.fcr.2022.108768
- Islam, M. T., Hasanuzzaman, M., Alam, M. M., Nahar, K., & Fujita, M. (2024). Salinity stress in rice: Effects, mechanisms, and management. Plant Stress, 11, 100251. https://doi.org/10.1016/j.stress.2024.100251
- Kumar, A., Singh, S., Gaurav, A. K., Srivastava, S., & Verma, J. P. (2022). Plant growth-promoting bacteria: Biological tools for the mitigation of salinity stress in plants. Frontiers in Microbiology, 11, 1216564. https://doi.org/10.3389/fmicb.2022.1216564
- Kumar, S., Beena, R., Kiruba, A. M., & Sabarinathan, S. (2023). Salinity stress affects pollen germination and tube growth in rice through oxidative damage. Plant Physiology and Biochemistry, 195, 358-367. https://doi.org/10.1016/j.plaphy.2023.01.032
- Mahmud, M. S., Abdullah-Al-Mamun, M., Hasan, M. M., Ahmed, S. S., & Islam, M. N. (2024). Antioxidant enzyme activities and gene expression in salt-tolerant and salt-sensitive rice genotypes under salinity stress. Cereal Research Communications, 52(1), 89-102. https://doi.org/10.1007/s42976-023-00398-5
- Mondal, S., Bose, B., Subudhi, P. K., & Jena, K. K. (2023). Unraveling salinity stress responses in rice: Insights from omics approaches. Plant Stress, 8, 100156. https://doi.org/10.1016/j.stress.2023.100156
- Negrão, S., Schmöckel, S. M., & Tester, M. (2020). Evaluating physiological responses of plants to salinity stress. Annals of Botany, 119(1), 1-11. https://doi.org/10.1093/aob/mcw191
- Parihar, P., Singh, S., Singh, R., Singh, V. P., & Prasad, S. M. (2020). Changing scenario in plant water relations due to salinity and drought stress in agriculture. Physiologia Plantarum, 171(4), 664-678. https://doi.org/10.1111/ppl.13210
- Paul, S., Roychoudhury, A., Banerjee, A., Chaudhuri, N., & Ghosh, P. (2021). Seed priming with spermidine ameliorates the negative effect of salinity on rice seedlings by modulating endogenous polyamine and carbohydrate metabolism. Protoplasma, 258(4), 883-897. https://doi.org/10.1007/s00709-021-01612-2
- Rahman, M. A., Hasanuzzaman, M., Nahar, K., Fujita, M., & Ozturk, M. (2022). Salt stress and rice: Adapting crop productivity in adverse environments. Physiologia Plantarum, 174(5), e13818. https://doi.org/10.1111/ppl.13818
- Rashid, M. H., Alam, M. J., Islam, M. M., & Hossain, M. A. (2024). Performance evaluation of BRRI developed salt tolerant rice varieties in southern coastal region of Bangladesh. Bangladesh Rice Journal, 27(1), 45-58. https://doi.org/10.3329/brj.v27i1.68574
- Reddy, I. N. B. L., Kim, B. K., Yoon, I. S., Kim, K. H., & Kwon, T. R. (2023). Salt tolerance in rice: Focus on mechanisms and approaches. Rice Science, 24(2), 123-144. https://doi.org/10.1016/j.rsci.2016.09.004
- Roy, S. J., Huang, W., Wang, X. J., Evrard, A., Schmöckel, S. M., Zafar, Z. U., & Tester, M. (2020). A novel protein kinase involved in Na⁺ exclusion revealed from positional cloning. Plant, Cell & Environment, 36(3), 553-568. https://doi.org/10.1111/pce.12608
- Sarkar, T., Thankappan, R., Kumar, A., Mishra, G. P., & Dobaria, J. R. (2021). Heterologous expression of the AtUSP gene for overcoming salinity stress in rice. Rice Science, 21(6), 310-320. https://doi.org/10.1016/j.rsci.2014.08.002
- Sehar, Z., Masood, A., & Khan, N. A. (2022). Salinity-induced oxidative stress and antioxidant defense mechanisms in wheat. Frontiers in Plant Science, 13, 983952. https://doi.org/10.3389/fpls.2022.983952
- Singh, R. K., Kota, S., & Flowers, T. J. (2023). Salt tolerance in rice: Present status and future prospects. International Journal of Molecular Sciences, 24(3), 2217. https://doi.org/10.3390/ijms24032217
- Wani, S. H., Kumar, V., Khare, T., Guddimalli, R., Parveda, M., Solymosi, K., & Suprasanna, P. (2021). Engineering salinity tolerance in plants: Progress and prospects. Planta, 251(4), 76. https://doi.org/10.1007/s00425-020-03366-6
- Zelm, E. V., Zhang, Y., & Testerink, C. (2020). Salt tolerance mechanisms of plants. Annual Review of Plant Biology, 71, 403-433. https://doi.org/10.1146/annurev-arplant-050718-100005
- Shohel, M.A.E., Rifath, M.A., Rimon, M.F.H., Haque, M.M., Mim, M.A.G., Majumdar,M.A. and Hasan, M.E.
Article View: 584 times